If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36u^2+32u-9=0
a = 36; b = 32; c = -9;
Δ = b2-4ac
Δ = 322-4·36·(-9)
Δ = 2320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2320}=\sqrt{16*145}=\sqrt{16}*\sqrt{145}=4\sqrt{145}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{145}}{2*36}=\frac{-32-4\sqrt{145}}{72} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{145}}{2*36}=\frac{-32+4\sqrt{145}}{72} $
| -8x+3(6x-5)=-85 | | 7a+3=3+2a | | 13-2c=-5 | | 2x+3(-x-6)=-26 | | -7(k+59)=28 | | 2x+500=x+500 | | 58+x+12+x=2x+16 | | -z+12+8=6z+9 | | 4q+-2=10 | | 2x-35/x=9 | | 6x^2-22x+180=0 | | -6k+8=92 | | -(3+x)-4x=5x+7 | | 7-4r=11 | | 13=x/3+18 | | 19.99+.81x=166.60 | | 92=6+0.5x | | 3(4b+3)=-87 | | 12-x/6=1 | | 6y+15=9y–6 | | —z+12+8=6z+9 | | 123+6x=375 | | 3x-12=7x+36 | | -26x=-4x | | 2.5X+10=1.4x+54 | | x^2-5x-11550=0 | | -2x²+18x-40=0 | | -3x+2=-43+2x | | 2x+6=3+(5/3)x | | 6(2+5x)=-168 | | 5x+25x-3=6(5x+2) | | 7(x-4)+5=3x+4(x-2) |